![]() |
![]() |
|
![]() |
Questo tutorial mostra come perfezionare il modello Instruct 2B di RecurrentGemma per un'attività di traduzione dall'inglese al francese utilizzando la libreria recurrentgemma
di Google DeepMind, JAX (una libreria di calcolo numerico ad alte prestazioni), Flax (la libreria di reti neurali basata su JAX), Chex (una libreria di utilità per scrivere codice JAX affidabile), Optax (la libreria di ottimizzazione e elaborazione del gradiente basata su JAX) e il set di dati MTNT (Machine Translation of Noisy Text). Anche se Flax non viene utilizzato direttamente in questo notebook, è stato utilizzato per creare Gemma.
La libreria recurrentgemma
è stata scritta con JAX, Flax, Orbax (una libreria basata su JAX per utilità di addestramento come il checkpointing) e SentencePiece (una libreria di tokenizzazione/detokenizzazione).
Questo blocco note può essere eseguito su Google Colab con la GPU T4 (vai a Modifica > Impostazioni del blocco note > in Acceleratore hardware seleziona GPU T4).
Configurazione
Le sezioni seguenti spiegano i passaggi per preparare un notebook per l'utilizzo di un modello RecurrentGemma, tra cui l'accesso al modello, l'ottenimento di una chiave API e la configurazione del runtime del notebook.
Configurare l'accesso a Kaggle per Gemma
Per completare questo tutorial, devi prima seguire le istruzioni di configurazione simili a quelle per la configurazione di Gemma, con alcune eccezioni:
- Accedi a RecurrentGemma (anziché a Gemma) su kaggle.com.
- Seleziona un runtime Colab con risorse sufficienti per eseguire il modello RecurrentGemma.
- Genera e configura un nome utente e una chiave API Kaggle.
Dopo aver completato la configurazione di RecurrentGemma, vai alla sezione successiva, dove imposterai le variabili di ambiente per il tuo ambiente Colab.
Imposta le variabili di ambiente
Imposta le variabili di ambiente per KAGGLE_USERNAME
e KAGGLE_KEY
. Quando viene visualizzato il messaggio "Concedere l'accesso?", accetta di fornire l'accesso ai secret.
import os
from google.colab import userdata # `userdata` is a Colab API.
os.environ["KAGGLE_USERNAME"] = userdata.get('KAGGLE_USERNAME')
os.environ["KAGGLE_KEY"] = userdata.get('KAGGLE_KEY')
Installa la libreria recurrentgemma
Al momento, l'accelerazione hardware senza costi di Colab è insufficient per eseguire questo notebook. Se utilizzi Colab Pay As You Go o Colab Pro, fai clic su Modifica > Impostazioni del notebook > seleziona GPU A100 > Salva per attivare l'accelerazione hardware.
A questo punto, devi installare la libreria recurrentgemma
di Google DeepMind da github.com/google-deepmind/recurrentgemma
. Se ricevi un errore relativo al "risolvere delle dipendenze di pip", in genere puoi ignorarlo.
pip install -q git+https://github.com/google-deepmind/recurrentgemma.git
Importare librerie
Questo notebook utilizza Flax (per le reti neurali), JAX di base, SentencePiece (per la tokenizzazione), Chex (una libreria di utilità per scrivere codice JAX affidabile), Optax (la libreria di ottimizzazione e elaborazione del gradiente) e i set di dati TensorFlow.
import pathlib
from typing import Any, Mapping, Iterator
import enum
import functools
import chex
import jax
import jax.numpy as jnp
import optax
import tensorflow as tf
import tensorflow_datasets as tfds
import sentencepiece as spm
from recurrentgemma import jax as recurrentgemma
Carica il modello RecurrentGemma
- Carica il modello RecurrentGemma con
kagglehub.model_download
, che accetta tre argomenti:
handle
: l'handle del modello di Kagglepath
: (stringa facoltativa) il percorso localeforce_download
: (booleano facoltativo) Forza il ricaricamento del modello
RECURRENTGEMMA_VARIANT = '2b-it' # @param ['2b', '2b-it'] {type:"string"}
import kagglehub
RECURRENTGEMMA_PATH = kagglehub.model_download(f'google/recurrentgemma/flax/{RECURRENTGEMMA_VARIANT}')
Downloading from https://www.kaggle.com/api/v1/models/google/recurrentgemma/flax/2b-it/1/download... 100%|██████████| 3.85G/3.85G [00:50<00:00, 81.5MB/s] Extracting model files...
print('RECURRENTGEMMA_VARIANT:', RECURRENTGEMMA_VARIANT)
RECURRENTGEMMA_VARIANT: 2b-it
- Controlla la posizione dei pesi del modello e del tokenizzatore, quindi imposta le variabili di percorso. La directory del tokenizzatore si trova nella directory principale in cui hai scaricato il modello, mentre i pesi del modello si trovano in una sottodirectory. Ad esempio:
- Il file
tokenizer.model
si troverà in/LOCAL/PATH/TO/recurrentgemma/flax/2b-it/1
). - Il checkpoint del modello sarà in
/LOCAL/PATH/TO/recurrentgemma/flax/2b-it/1/2b-it
.
CKPT_PATH = os.path.join(RECURRENTGEMMA_PATH, RECURRENTGEMMA_VARIANT)
TOKENIZER_PATH = os.path.join(RECURRENTGEMMA_PATH, 'tokenizer.model')
print('CKPT_PATH:', CKPT_PATH)
print('TOKENIZER_PATH:', TOKENIZER_PATH)
CKPT_PATH: /root/.cache/kagglehub/models/google/recurrentgemma/flax/2b-it/1/2b-it TOKENIZER_PATH: /root/.cache/kagglehub/models/google/recurrentgemma/flax/2b-it/1/tokenizer.model
Carica e prepara il set di dati MTNT e il tokenizzatore Gemma
Utilizzerai il set di dati MTNT (traduzione automatica di testo con rumore), disponibile nei set di dati di TensorFlow.
Scarica la parte del set di dati MTNT dall'inglese al francese e poi estrai due esempi. Ogni esempio nel set di dati contiene due voci: src
: la frase originale in inglese e dst
: la traduzione francese corrispondente.
ds = tfds.load("mtnt/en-fr", split="train")
ds = ds.take(2)
ds = ds.as_numpy_iterator()
for idx, example in enumerate(ds):
print(f'Example {idx}:')
for key, val in example.items():
print(f'{key}: {val}')
print()
Downloading and preparing dataset 35.08 MiB (download: 35.08 MiB, generated: 11.33 MiB, total: 46.41 MiB) to /root/tensorflow_datasets/mtnt/en-fr/1.0.0... Dl Completed...: 0 url [00:00, ? url/s] Dl Size...: 0 MiB [00:00, ? MiB/s] Extraction completed...: 0 file [00:00, ? file/s] Generating splits...: 0%| | 0/3 [00:00<?, ? splits/s] Generating train examples...: 0%| | 0/35692 [00:00<?, ? examples/s] Shuffling /root/tensorflow_datasets/mtnt/en-fr/1.0.0.incompleteJLH33K/mtnt-train.tfrecord*...: 0%| … Generating test examples...: 0%| | 0/1020 [00:00<?, ? examples/s] Shuffling /root/tensorflow_datasets/mtnt/en-fr/1.0.0.incompleteJLH33K/mtnt-test.tfrecord*...: 0%| |… Generating valid examples...: 0%| | 0/811 [00:00<?, ? examples/s] Shuffling /root/tensorflow_datasets/mtnt/en-fr/1.0.0.incompleteJLH33K/mtnt-valid.tfrecord*...: 0%| … Dataset mtnt downloaded and prepared to /root/tensorflow_datasets/mtnt/en-fr/1.0.0. Subsequent calls will reuse this data. Example 0: dst: b'Le groupe de " toutes les \xc3\xa9toiles potentielles de la conf\xc3\xa9rence de l\'Est mais qui ne s\'en sortent pas dans le groupe de l\'Ouest ".' src: b'The group of \xe2\x80\x9ceastern conference potential all stars but not making it in the West\xe2\x80\x9d group.' Example 1: dst: b"Kameron est-elle un peu aigrie de son manque de temps \xc3\xa0 l'\xc3\xa9cran ?" src: b'Is Kameron a Little Salty About Her Lack of Air Time?'
Carica il tokenizzatore Gemma, creato utilizzando sentencepiece.SentencePieceProcessor
:
vocab = spm.SentencePieceProcessor()
vocab.Load(TOKENIZER_PATH)
True
Personalizza SentencePieceProcessor
per l'attività di traduzione dall'inglese al francese. Poiché perfezionerai la parte in inglese del modello RecurrentGemma (Griffin), devi apportare alcune modifiche, ad esempio:
Prefisso di input: l'aggiunta di un prefisso comune a ogni input indica l'attività di traduzione. Ad esempio, puoi utilizzare un prompt con un prefisso come
Translate this into French: [INPUT_SENTENCE]
.Il suffisso di inizio della traduzione: l'aggiunta di un suffisso alla fine di ogni prompt indica al modello Gemma esattamente quando iniziare la procedura di traduzione. Una nuova riga dovrebbe fare al caso tuo.
Token del modello linguistico: i modelli RecurrentGemma (Griffin) si aspettano un token "inizio sequenza" all'inizio di ogni sequenza. Analogamente, devi aggiungere un token "fine sequenza" alla fine di ogni esempio di addestramento.
Crea un wrapper personalizzato attorno a SentencePieceProcessor
come segue:
class GriffinTokenizer:
"""A custom wrapper around a SentencePieceProcessor."""
def __init__(self, spm_processor: spm.SentencePieceProcessor):
self._spm_processor = spm_processor
@property
def pad_id(self) -> int:
"""Fast access to the pad ID."""
return self._spm_processor.pad_id()
def tokenize(
self,
example: str | bytes,
prefix: str = '',
suffix: str = '',
add_eos: bool = True,
) -> jax.Array:
"""
A tokenization function.
Args:
example: Input string to tokenize.
prefix: Prefix to add to the input string.
suffix: Suffix to add to the input string.
add_eos: If True, add an end of sentence token at the end of the output
sequence.
Returns:
Tokens corresponding to the input string.
"""
int_list = [self._spm_processor.bos_id()]
int_list.extend(self._spm_processor.EncodeAsIds(prefix + example + suffix))
if add_eos:
int_list.append(self._spm_processor.eos_id())
return jnp.array(int_list, dtype=jnp.int32)
def tokenize_tf_op(
self,
str_tensor: tf.Tensor,
prefix: str = '',
suffix: str = '',
add_eos: bool = True,
) -> tf.Tensor:
"""A TensforFlow operator for the `tokenize` function."""
encoded = tf.numpy_function(
self.tokenize,
[str_tensor, prefix, suffix, add_eos],
tf.int32)
encoded.set_shape([None])
return encoded
def to_string(self, tokens: jax.Array) -> str:
"""Convert an array of tokens to a string."""
return self._spm_processor.EncodeIds(tokens.tolist())
Prova a eseguire l'inizializzazione del nuovo GriffinTokenizer
personalizzato e poi applicalo a un piccolo campione del set di dati MTNT:
def tokenize_source(tokenizer, example: tf.Tensor):
return tokenizer.tokenize_tf_op(
example,
prefix='Translate this into French:\n',
suffix='\n',
add_eos=False
)
def tokenize_destination(tokenizer, example: tf.Tensor):
return tokenizer.tokenize_tf_op(example, add_eos=True)
tokenizer = GriffinTokenizer(vocab)
ds = tfds.load("mtnt/en-fr",split="train")
ds = ds.take(2)
ds = ds.map(lambda x: {
'src': tokenize_source(tokenizer, x['src']),
'dst': tokenize_destination(tokenizer, x['dst'])
})
ds = ds.as_numpy_iterator()
for idx, example in enumerate(ds):
print(f'Example {idx}:')
for key, val in example.items():
print(f'{key}: {val}')
print()
Example 0: src: [ 2 49688 736 1280 6987 235292 108 651 2778 576 1080 104745 11982 5736 832 8995 901 780 3547 665 575 573 4589 235369 2778 235265 108] dst: [ 2 2025 29653 581 664 16298 1437 55563 41435 7840 581 683 111452 581 533 235303 9776 4108 2459 679 485 235303 479 6728 579 1806 2499 709 29653 581 533 235303 101323 16054 1] Example 1: src: [ 2 49688 736 1280 6987 235292 108 2437 87150 477 476 11709 230461 8045 3636 40268 576 4252 4897 235336 108] dst: [ 2 213606 477 1455 235290 3510 748 8268 191017 2809 581 2032 69972 581 11495 1305 533 235303 65978 1654 1]
Crea un caricatore di dati per l'intero set di dati MTNT:
@chex.dataclass(frozen=True)
class TrainingInput:
# Input tokens provided to the model.
input_tokens: jax.Array
# A mask that determines which tokens contribute to the target loss
# calculation.
target_mask: jax.Array
class DatasetSplit(enum.Enum):
TRAIN = 'train'
VALIDATION = 'valid'
class MTNTDatasetBuilder:
"""A data loader for the MTNT dataset."""
N_ITEMS = {DatasetSplit.TRAIN: 35_692, DatasetSplit.VALIDATION: 811}
BUFFER_SIZE_SHUFFLE = 10_000
TRANSLATION_PREFIX = 'Translate this into French:\n'
TRANSLATION_SUFFIX = '\n'
def __init__(self,
tokenizer : GriffinTokenizer,
max_seq_len: int):
"""A constructor.
Args:
tokenizer: The tokenizer to use.
max_seq_len: The size of each sequence in a given batch.
"""
self._tokenizer = tokenizer
self._base_data = {
DatasetSplit.TRAIN: tfds.load("mtnt/en-fr",split="train"),
DatasetSplit.VALIDATION: tfds.load("mtnt/en-fr",split="valid"),
}
self._max_seq_len = max_seq_len
def _tokenize_source(self, example: tf.Tensor):
"""A tokenization function for the source."""
return self._tokenizer.tokenize_tf_op(
example, prefix=self.TRANSLATION_PREFIX, suffix=self.TRANSLATION_SUFFIX,
add_eos=False
)
def _tokenize_destination(self, example: tf.Tensor):
"""A tokenization function for the French translation."""
return self._tokenizer.tokenize_tf_op(example, add_eos=True)
def _pad_up_to_max_len(self,
input_tensor: tf.Tensor,
pad_value: int | bool,
) -> tf.Tensor:
"""Pad the given tensor up to sequence length of a batch."""
seq_len = tf.shape(input_tensor)[0]
to_pad = tf.maximum(self._max_seq_len - seq_len, 0)
return tf.pad(
input_tensor, [[0, to_pad]], mode='CONSTANT', constant_values=pad_value,
)
def _to_training_input(
self,
src_tokens: jax.Array,
dst_tokens: jax.Array,
) -> TrainingInput:
"""Build a training input from a tuple of source and destination tokens."""
# The input sequence fed to the model is simply the concatenation of the
# source and the destination.
tokens = tf.concat([src_tokens, dst_tokens], axis=0)
# You want to prevent the model from updating based on the source (input)
# tokens. To achieve this, add a target mask to each input.
q_mask = tf.zeros_like(src_tokens, dtype=tf.bool)
a_mask = tf.ones_like(dst_tokens, dtype=tf.bool)
mask = tf.concat([q_mask, a_mask], axis=0)
# If the output tokens sequence is smaller than the target sequence size,
# then pad it with pad tokens.
tokens = self._pad_up_to_max_len(tokens, self._tokenizer.pad_id)
# You don't want to perform the backward on the pad tokens.
mask = self._pad_up_to_max_len(mask, False)
return TrainingInput(input_tokens=tokens, target_mask=mask)
def get_train_dataset(self, batch_size: int, num_epochs: int):
"""Build the training dataset."""
# Tokenize each sample.
ds = self._base_data[DatasetSplit.TRAIN].map(
lambda x : (self._tokenize_source(x['src']),
self._tokenize_destination(x['dst']))
)
# Convert them to training inputs.
ds = ds.map(lambda x, y: self._to_training_input(x, y))
# Remove the samples which are too long.
ds = ds.filter(lambda x: tf.shape(x.input_tokens)[0] <= self._max_seq_len)
# Shuffle the dataset.
ds = ds.shuffle(buffer_size=self.BUFFER_SIZE_SHUFFLE)
# Repeat if necessary.
ds = ds.repeat(num_epochs)
# Build batches.
ds = ds.batch(batch_size, drop_remainder=True)
return ds
def get_validation_dataset(self, batch_size: int):
"""Build the validation dataset."""
# Same as the training dataset, but no shuffling and no repetition
ds = self._base_data[DatasetSplit.VALIDATION].map(
lambda x : (self._tokenize_source(x['src']),
self._tokenize_destination(x['dst']))
)
ds = ds.map(lambda x, y: self._to_training_input(x, y))
ds = ds.filter(lambda x: tf.shape(x.input_tokens)[0] <= self._max_seq_len)
ds = ds.batch(batch_size, drop_remainder=True)
return ds
Prova MTNTDatasetBuilder
creando di nuovo un'istanza di MTNTDatasetBuilder
personalizzato, applicandolo al set di dati MTNT e prendendo due esempi:GriffinTokenizer
dataset_builder = MTNTDatasetBuilder(tokenizer, max_seq_len=20)
ds = dataset_builder.get_train_dataset(3, 1)
ds = ds.take(2)
ds = ds.as_numpy_iterator()
for idx, example in enumerate(ds):
print(f'Example {idx}:')
for key, val in example.items():
print(f'{key}: {val}')
print()
WARNING:tensorflow:Mapping types may not work well with tf.nest. Prefer using MutableMapping for <class '__main__.TrainingInput'> WARNING:tensorflow:Mapping types may not work well with tf.nest. Prefer using MutableMapping for <class '__main__.TrainingInput'> WARNING:tensorflow:Mapping types may not work well with tf.nest. Prefer using MutableMapping for <class '__main__.TrainingInput'> Example 0: input_tokens: [[ 2 49688 736 1280 6987 235292 108 12583 665 235265 108 2 6151 94975 1320 6238 235265 1 0 0] [ 2 49688 736 1280 6987 235292 108 4899 29960 11270 108282 235265 108 2 4899 79025 11270 108282 1 0] [ 2 49688 736 1280 6987 235292 108 26620 235265 108 2 26620 235265 1 0 0 0 0 0 0]] target_mask: [[False False False False False False False False False False False True True True True True True True False False] [False False False False False False False False False False False False False True True True True True True False] [False False False False False False False False False False True True True True False False False False False False]] Example 1: input_tokens: [[ 2 49688 736 1280 6987 235292 108 527 5174 1683 235336 108 2 206790 581 20726 482 2208 1654 1] [ 2 49688 736 1280 6987 235292 108 28484 235256 235336 108 2 120500 13832 1654 1 0 0 0 0] [ 2 49688 736 1280 6987 235292 108 235324 235304 2705 235265 108 2 235324 235304 19963 235265 1 0 0]] target_mask: [[False False False False False False False False False False False False True True True True True True True True] [False False False False False False False False False False False True True True True True False False False False] [False False False False False False False False False False False False True True True True True True False False]]
Configura il modello
Prima di iniziare a perfezionare il modello Gemma, devi configurarlo.
Carica il checkpoint del modello RecurrentGemma (Griffin) con il metodo recurrentgemma.jax.utils.load_parameters
:
params = recurrentgemma.load_parameters(CKPT_PATH, "single_device")
Per caricare automaticamente la configurazione corretta dal checkpoint del modello RecurrentGemma, utilizza recurrentgemma.GriffinConfig.from_flax_params_or_variables
:
config = recurrentgemma.GriffinConfig.from_flax_params_or_variables(params)
Crea un'istanza del modello Griffin con recurrentgemma.jax.Griffin
:
model = recurrentgemma.Griffin(config)
Crea un sampler
con recurrentgemma.jax.Sampler
sopra il checkpoint/i pesi del modello RecurrentGemma e lo tokenizer per verificare se il modello può eseguire la traduzione:
sampler = recurrentgemma.Sampler(model=model, vocab=vocab, params=params)
Ottimizza il modello
In questa sezione imparerai a:
- Utilizza la classe
gemma.deprecated.transformer.Transformer
per creare il passaggio in avanti e la funzione di perdita. - Crea i vettori della posizione e della maschera di attenzione per i token
- Crea una funzione di passaggio dell'addestramento con Flax.
- Crea il passaggio di convalida senza il passaggio a ritroso.
- Crea il loop di addestramento.
- Ottimizza il modello Gemma.
Definisci il passaggio in avanti e la funzione di perdita utilizzando la classe recurrentgemma.jax.griffin.Griffin
. RecurrentGemma Griffin
eredita da flax.linen.Module
e offre due metodi essenziali:
init
: inizializza i parametri del modello.apply
: esegue la funzione__call__
del modello utilizzando un determinato insieme di parametri.
Poiché stai lavorando con pesi di Gemma preaddestrati, non devi utilizzare la funzione init
.
def forward_and_loss_fn(
params,
*,
model: recurrentgemma.Griffin,
input_tokens: jax.Array, # Shape [B, L]
input_mask: jax.Array, # Shape [B, L]
positions: jax.Array, # Shape [B, L]
) -> jax.Array:
"""Forward pass and loss function.
Args:
params: model's input parameters.
model: Griffin model to call.
input_tokens: input tokens sequence, shape [B, L].
input_mask: tokens to ignore when computing the loss, shape [B, L].
positions: relative position of each token, shape [B, L].
Returns:
Softmax cross-entropy loss for the next-token prediction task.
"""
batch_size = input_tokens.shape[0]
# Forward pass on the input data.
# No attention cache is needed here.
# Exclude the last step as it does not appear in the targets.
logits, _ = model.apply(
{"params": params},
tokens=input_tokens[:, :-1],
segment_pos=positions[:, :-1],
cache=None,
)
# Similarly, the first token cannot be predicteds.
target_tokens = input_tokens[:, 1:]
target_mask = input_mask[:, 1:]
# Convert the target labels into one-hot encoded vectors.
one_hot = jax.nn.one_hot(target_tokens, logits.shape[-1])
# Don't update on unwanted tokens.
one_hot = one_hot * target_mask.astype(one_hot.dtype)[...,None]
# Normalization factor.
norm_factor = batch_size * (jnp.sum(target_mask) + 1e-8)
# Return the negative log-likelihood loss (NLL) function.
return -jnp.sum(jax.nn.log_softmax(logits) * one_hot) / norm_factor
Crea la funzione train_step
che esegue il passaggio all'indietro e aggiorna di conseguenza i parametri del modello, dove:
jax.value_and_grad
serve per valutare la funzione di perdita e i gradienti durante i passaggi in avanti e all'indietro.optax.apply_updates
serve per aggiornare i parametri.
Params = Mapping[str, Any]
def get_positions(example: jax.Array, pad_id : int) -> jax.Array:
"""Builds the position vector from the given tokens."""
pad_mask = example != pad_id
positions = jnp.cumsum(pad_mask, axis=-1)
# Subtract one for all positions from the first valid one as they are
# 0-indexed
positions = positions - (positions >= 1)
return positions
@functools.partial(
jax.jit,
static_argnames=['model', 'optimizer'],
donate_argnames=['params', 'opt_state'],
)
def train_step(
model: recurrentgemma.Griffin,
params: Params,
optimizer: optax.GradientTransformation,
opt_state: optax.OptState,
pad_id: int,
example: TrainingInput,
) -> tuple[jax.Array, Params, optax.OptState]:
"""The train step.
Args:
model: The RecurrentGemma (Griffin) model.
params: The model's input parameters.
optimizer: The Optax optimizer to use.
opt_state: The input optimizer's state.
pad_id: The ID of the pad token.
example: The input batch.
Returns:
Training loss, updated parameters, updated optimizer state.
"""
positions = get_positions(example.input_tokens, pad_id)
# Forward and backward passes.
train_loss, grads = jax.value_and_grad(forward_and_loss_fn)(
params,
model=model,
input_tokens=example.input_tokens,
input_mask=example.target_mask,
positions=positions,
)
# Update the parameters.
updates, opt_state = optimizer.update(grads, opt_state, params)
params = optax.apply_updates(params, updates)
return train_loss, params, opt_state
Crea la funzione validation_step
senza il passaggio all'indietro:
@functools.partial(jax.jit, static_argnames=['model'])
def validation_step(
model: recurrentgemma.Griffin,
params: Params,
pad_id: int,
example: TrainingInput,
) -> jax.Array:
return forward_and_loss_fn(
params,
model=model,
input_tokens=example.input_tokens,
input_mask=example.target_mask,
positions=get_positions(example.input_tokens, pad_id),
)
Definisci il loop di addestramento:
def train_loop(
model: recurrentgemma.Griffin,
params: Params,
optimizer: optax.GradientTransformation,
train_ds: Iterator[TrainingInput],
validation_ds: Iterator[TrainingInput],
num_steps: int | None = None,
eval_every_n: int = 20,
):
opt_state = jax.jit(optimizer.init)(params)
step_counter = 0
avg_loss=0
# The first round of the validation loss.
n_steps_eval = 0
eval_loss = 0
for val_example in validation_ds.as_numpy_iterator():
eval_loss += validation_step(
model, params, dataset_builder._tokenizer.pad_id, val_example
)
n_steps_eval += 1
print(f"Start, validation loss: {eval_loss/n_steps_eval}")
for train_example in train_ds:
train_loss, params, opt_state = train_step(
model=model,
params=params,
optimizer=optimizer,
opt_state=opt_state,
pad_id=dataset_builder._tokenizer.pad_id,
example=train_example,
)
step_counter += 1
avg_loss += train_loss
if step_counter % eval_every_n == 0:
eval_loss = 0
n_steps_eval = 0
val_iterator = validation_ds.as_numpy_iterator()
for val_example in val_iterator:
eval_loss += validation_step(
model,
params,
dataset_builder._tokenizer.pad_id,
val_example,
)
n_steps_eval +=1
avg_loss /= eval_every_n
eval_loss /= n_steps_eval
print(f"STEP {step_counter} training loss: {avg_loss} - eval loss: {eval_loss}")
avg_loss=0
if num_steps is not None and step_counter > num_steps:
break
return params
Qui devi scegliere un'ottimizzazione (Optax). Per i dispositivi con meno memoria, devi utilizzare SGD, poiché ha un'impronta di memoria molto inferiore. Per ottenere il miglior rendimento della messa a punto, prova Adam-W. Gli iperparametri ottimali per ogni ottimizzatore per la particolare attività in questo notebook sono forniti in questo esempio per il checkpoint 2b-it
.
def griffin_weight_decay_mask(params_like: optax.Params) -> Any:
# Don't put weight decay on the RGLRU, the embeddings and any biases
def enable_weight_decay(path: list[Any], _: Any) -> bool:
# Parameters in the LRU and embedder
path = [dict_key.key for dict_key in path]
if 'rg_lru' in path or 'embedder' in path:
return False
# All biases and scales
if path[-1] in ('b', 'scale'):
return False
return True
return jax.tree_util.tree_map_with_path(enable_weight_decay, params_like)
optimizer_choice = "sgd"
if optimizer_choice == "sgd":
optimizer = optax.sgd(learning_rate=1e-3)
num_steps = 300
elif optimizer_choice == "adamw":
optimizer = optax.adamw(
learning_rate=1e-4,
b2=0.96,
eps=1e-8,
weight_decay=0.1,
mask=griffin_weight_decay_mask,
)
num_steps = 100
else:
raise ValueError(f"Unknown optimizer: {optimizer_choice}")
Prepara i set di dati di addestramento e convalida:
# Choose a small sequence length size, so that everything fits in memory.
num_epochs = 1
batch_size = 1
sequence_length = 32
# Make the dataset builder.
tokenizer = GriffinTokenizer(vocab)
dataset_builder= MTNTDatasetBuilder(tokenizer, sequence_length + 1)
# Build the training dataset.
train_ds = dataset_builder.get_train_dataset(
batch_size=batch_size,
num_epochs=num_epochs,
).as_numpy_iterator()
# Build the validation dataset, with a limited number of samples for this demo.
validation_ds = dataset_builder.get_validation_dataset(
batch_size=batch_size,
).take(50)
Inizia a ottimizzare il modello RecurrentGemma (Griffin) su un numero limitato di passaggi (num_steps
):
trained_params = train_loop(
model=model,
params=params,
optimizer=optimizer,
train_ds=train_ds,
validation_ds=validation_ds,
num_steps=num_steps,
)
Start, validation loss: 7.894117832183838 /usr/local/lib/python3.10/dist-packages/jax/_src/interpreters/mlir.py:920: UserWarning: Some donated buffers were not usable: ShapedArray(int32[1,33]), ShapedArray(bool[1,33]), ShapedArray(int32[], weak_type=True). See an explanation at https://jax.readthedocs.io/en/latest/faq.html#buffer_donation. warnings.warn("Some donated buffers were not usable:" STEP 20 training loss: 4.592616081237793 - eval loss: 2.847407102584839 STEP 40 training loss: 2.7537424564361572 - eval loss: 2.9258534908294678 STEP 60 training loss: 2.835618257522583 - eval loss: 2.4382340908050537 STEP 80 training loss: 2.6322107315063477 - eval loss: 2.3696839809417725 STEP 100 training loss: 1.8703256845474243 - eval loss: 2.355681896209717 STEP 120 training loss: 2.7280433177948 - eval loss: 2.4059958457946777 STEP 140 training loss: 2.3047447204589844 - eval loss: 2.083082914352417 STEP 160 training loss: 2.3432137966156006 - eval loss: 2.095074415206909 STEP 180 training loss: 2.1081202030181885 - eval loss: 2.006460189819336 STEP 200 training loss: 2.5359647274017334 - eval loss: 1.9667452573776245 STEP 220 training loss: 2.202195644378662 - eval loss: 1.9440618753433228 STEP 240 training loss: 2.756615400314331 - eval loss: 2.1073737144470215 STEP 260 training loss: 2.5128934383392334 - eval loss: 2.117241859436035 STEP 280 training loss: 2.73045015335083 - eval loss: 1.9159646034240723 STEP 300 training loss: 2.0918595790863037 - eval loss: 1.9742532968521118
Sia la perdita di addestramento che la perdita di convalida dovrebbero essere diminuite con ogni conteggio dei passaggi.
Per assicurarti che l'input corrisponda al formato di addestramento, ricordati di utilizzare il prefisso Translate this into French:\n
e un carattere di nuova riga alla fine. Questo indica al modello di iniziare la traduzione.
sampler.params = trained_params
output = sampler(
["Translate this into French:\nHello, my name is Morgane.\n"],
total_generation_steps=100,
)
print(output.text[0])
/usr/local/lib/python3.10/dist-packages/jax/_src/interpreters/mlir.py:920: UserWarning: Some donated buffers were not usable: ShapedArray(int32[1,16]). See an explanation at https://jax.readthedocs.io/en/latest/faq.html#buffer_donation. warnings.warn("Some donated buffers were not usable:" Mais je m'appelle Morgane.
Scopri di più
- Puoi scoprire di più sulla libreria
recurrentgemma
di Google DeepMind su GitHub, che contiene le docstring dei metodi e dei moduli utilizzati in questo tutorial, ad esempiorecurrentgemma.jax.load_parameters
,recurrentgemma.jax.Griffin
erecurrentgemma.jax.Sampler
. - Le seguenti librerie hanno i propri siti di documentazione: JAX core, Flax, Chex, Optax e Orbax.
- Per la documentazione del tokenizzatore/detokenizzatore
sentencepiece
, consulta il repository GitHubsentencepiece
di Google. - Per la documentazione di
kagglehub
, consultaREADME.md
nel repository GitHub dikagglehub
di Kaggle. - Scopri come utilizzare i modelli Gemma con Vertex AI di Google Cloud.
- Se utilizzi TPU di Google Cloud (v3-8 e versioni successive), assicurati di eseguire l'aggiornamento anche all'ultima versione del pacchetto
jax[tpu]
(!pip install -U jax[tpu] -f https://storage.googleapis.com/jax-releases/libtpu_releases.html
), di riavviare il runtime e di verificare che le versioni dijax
ejaxlib
corrispondano (!pip list | grep jax
). In questo modo puoi evitare l'erroreRuntimeError
che può verificarsi a causa della mancata corrispondenza delle versioni dijaxlib
ejax
. Per ulteriori istruzioni di installazione di JAX, consulta la documentazione di JAX. - Consulta il documento RecurrentGemma: Moving Past Transformers for Efficient Open Language Models di Google DeepMind.
- Leggi il documento Griffin: Mixing Gated Linear Recurrences with Local Attention for Efficient Language Models di Google DeepMind per scoprire di più sull'architettura del modello utilizzata da RecurrentGemma.